Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit
نویسندگان
چکیده
In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cells. In about one-third of these cells, sEPSCs were temporally correlated, arriving in brief bursts (10-55 ms) more often than expected from a Poisson process. Correlations were suppressed by antagonizing the GABA(C) receptor (expressed on bipolar terminals), and correlations were induced by raising extracellular calcium or osmolarity. Simulations of the feedback circuit produced "bursty" release when the bipolar cell escaped intermittently from inhibition. Correlations of similar duration were present in the light-evoked sEPSCs and spike trains of sluggish-type ganglion cells. These correlations were suppressed by antagonizing GABA(C) receptors, indicating that glutamate bursts from bipolar terminals induce spike bursts in ganglion cells.
منابع مشابه
Different types of retinal inhibition have distinct neurotransmitter release properties.
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are du...
متن کاملPhysiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus
Norepinephrine (NE) released from the nerve terminal of locus coeruleus (LC) neurons contributes to about 70% of the total extracellular NE in primates brain. In addition, LC neurons also release NE from somatodendritic sites. Quantal NE release from soma of LC neurons has the characteristics of long latency, nerve activity-dependency, and autoinhibition by α(2)-adrenergic autoreceptor. The dis...
متن کاملEfficiency of synaptic transmission of single-photon events from rod photoreceptor to rod bipolar dendrite.
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. ...
متن کاملNeurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells.
Neuronal output is modulated by inhibition onto both dendrites and axons. It is unknown whether inhibitory synapses at these two cellular compartments of an individual neuron are regulated coordinately or separately during in vivo development. Because neurotransmission influences synapse maturation and circuit development, we determined how loss of inhibition affects the expression of diverse t...
متن کاملStatic and dynamic membrane properties of large-terminal bipolar cells from goldfish retina: experimental test of a compartment model.
Capacitance measurements allow direct studies of exocytosis and endocytosis in single synaptic terminals isolated from bipolar neurons of goldfish retina. Extending the technique to intact bipolar cells, with their more complex morphology, requires information about the cells' electrotonic architecture. To this end, we developed a compartment model of bipolar neurons isolated from goldfish reti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 38 شماره
صفحات -
تاریخ انتشار 2003